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PIE~EWISE-HOMOGENEOUS PLATES OF EXTRE~L STIFFNESS* 

S.B. VIGDERGAUZ 

The shapes of a finite number of foreign inclusions in an elastic plane 
thatminimizeitspotentialstrainenergy forauniformstress fieldgivenat 
infinity are sought. The area of the inclusions is considered known and 
their contact with the fundamental plate material (matrix) is ideal. It 
is shown that for a state close to multilateral compression the boundary 
of each inclusion is optimal if the force interaction of the materials 
along it reduces to a constant pressure of definite intensity. The stress 
field in the inclusions here turns out to be uniform while the desired 
boundaries are equally-strong. Their actual determination reduces to 
solving well-studied modification of the conjugate boundary value problem 
(explicit in a number of cases) for analytic functions. 

1. Let r be a set of m smooth closed curves rk, k = 1, 2, . . ., m, located arbitrarily 
in the exterior of each other in the E plane of the complex variable z=z+iy, s, is a 
simply-connected domain of area qk within Ft. S, is a multiconnected infinite domain sup- 
plementing S_ = U Sg up to E, and n, t are the directions of a local curvilinear coordinate 
system on I? along the normal and the tangent at any point $. 

Each of the listed m i-i domains is occupied by its own homogeneous and isotropic 
linearly elastic material of identical small thickness h with shear modulus pj and Poisson's 
ratio vj,j=O, 1, . . . . m, together with which the constant x1 = (3 -v1)/(1 +v,) corresponding 
to a generalized plane stress state /l/ is also introduced. To be specific, we will assume 

ro> pkr k = 1, 2, , . ., m. 
The loading conditions are given by components of the stress tensor T, at infinity 

&"ZP -= 01 0; Qo, z,= =o (1.1) 

Let us consider the problem of minimizing the strain energy of a plate by selecting the 
optimal shape of the contours rr. We have in the notation used 

u(% I"0 rkt 9kt P,, QJ-+ minlr, = U0 (1.2) 

The energy density w(z) at each point of the plate can be represented in terms of the 

invariants I,, I, of the stress tensor T (2) /l/ 

%, (1 + VI) w (2) = kfl,e (2) + 2 (1 + VI) 1, I.41 v -3) 
ZE s,, j=O, 1, 2, . . . . m 

The curves rr are lines of discontinuity of U' (2). For functions of this kind, their 
limit values on r from S, and S_ will be denoted by the superscripts plus and minus, 
respectively. 

The following asymptotic form results from (1.1) as 12 I+m: 

11 (2) = a, + 0 (I z I-"), u,, = P, + Q. 

41, (z) = bo2 - apa + 0 (I z I-d)r b, = Q0 - P, 

in E 

1% (1 -I- vd w (4 = ch + 0 (1~ l-q 
c = (1 - v3 a,* + (1 -f- v*) &*’ 

Taking this into account , we can write the regularized functional as a convergentintegral 

The first term in (1.4) corresponds to a perturbation of the uniform field (1.1) in S, 
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induced by the inclusions, while the second is their intrinsic strain. For given forces P,, 
Q,, the minimum of U obviously corresponds to a plate of maximum stiffness. 

The components of the tensor T(z) are determined in each domain in terms of a pair of 
holomorphic potentials therein cp (a), 3, (z), connected on T by continuity boundary conditions 
for the displacement vector (U,,(Z), ~~(a)) and the normal forces 0, (8, %a: (8: 

pk fxO~O (%) - %qi - $i-?ij] = PO bk(Pk (5) - %qk’ (5) - h(s)] (9.5) 

(PO(%)+%~+~6$ib=~k(%)+%&?h-~~=jk(%) 0.6) 

%E r,* k = 1, 2, . .., m 

‘%(~)=e,+0(/~/-'), 2~~(z~=~~+o~i~i-~), 
Izl+=) (i.7) 

1, (2) = 4 Re '~1' (z), 1: (2) + 418 (z) = (1.8) 

4 I fQj” (z) + $‘j (2) IpI z E Sj, i = 0, 1,, 2, . . ., m 

The functions fk(z) defining the contact forces between the matrix and the inclusions 
are written down explicitly for convenience. 

Let us pose problem (1.1) as a variational problem regarding the stationary value of the 
quantity U in the form (1.4) for moving contours Tk and isoperimetric constraints on the area 
of the domain Sk (dZ= Id% 1 is the differential of the contour arclength): 

z~+&)dZ= (z&- s ,+)dZ=2, 

k 

w 
Equilibrium equations of the medium in the domains S, and the stationarity condition on 

T are obtained in the form of relationships for the jump in the function w(z) by using 
ordinary variational techniques /2, 3/ 

w+(g)-w-(%)=&t tEr#, k==i, 2,..., m (1.10) 

It is known to be conserved if the shape of the contours Tk is such that the force 
interaction of the phases along each of them reduces to just normal pressure of a constant 
magnitude pr and, this means to the accuracy of non-essential components fk (%) = Pk%. The a 

priori assignment of such forces affords the possibility of solving problem (1.6) separately 
in the interior domains for contours of any kind: zcpx(a) = prz, gk(z) = 0, ZE S,, k = 1, 2, . . . . 
m.The stress field therein is here uniform according to (1.8): 

1, (2) = aenst = 2pk, 1, (s) = censt - -pk=. se S, (l.ii) 

and in particular w- (%) = const. Then it follows from (1.10) that w*(f) = Con& When taking 
account of the representation f1 (E) = a, f a,, .1,(E) = rats - a,@, in the (~2, 4) coordinate 
system on I? and also the conditions a,,* = pe, %t - +-0 this is equivalent to the well-known 
equal-strength requirment /2/ for the desired contours: at ’ =conSt, which was earlier dis- 
playedin a number of papers as the necessary optimality condition in a plate with holes but 
not with elastic inclusions according to the Mises local plasticity criterion/l/. It is 
obtained in /3/ by a variational method for the energy criterion. 

Now problem (1.6) for a domain S, under a given load on the eqally-strong interfaces of 
the media is identical with that considered in /4/ where it is shown in particular that 49, = 
%a, zE S,, 0;' = a, - on+ = aa + pk, while the boundary condition 

- 2&l (%) = (2pk 

follows from (1.6) for $0 (s) = b,, z + Q,(Z).. 

- sa) E, &Gz r, (lS2) 

Onthe other hand, the elimination of eO(%) from (1.5) and (1.6) after reduction yields 
on the contour I', 

pk = --a,-= &(+-_t)+*, ’ %---o,- (1.13) 

It is characteristic that the magnitude of the pressure depends only on the global part 
of the tensor T,. 

We will now find the value iJ, for the equally-strong boundaries. It follows from (1.11) 
that the energy density w (2) in the interior domains Sk is constant while itresults in 

So in the form 

w (s, sr) - c - 1%' (2) I' - '1,6,* = grad' pr (2) - 'tB&,,a 

when taking account of the previous reasoning and the Cauchy-Riemann relations for the func- 
tions pl(s) = Re g, (2) and pr (z) = Im cpo (I). 

Consequently, the first component in (1.4) is converted into a curvilinear integral of 
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Pl (E) 4% (%)/al in r, on the basis of Green's formula and the asymptotic form (1.7). ~yvirtue 
of the i .dentities 2p, (5) = (2p, - a,) I, 8p, @)/al = (2p~ - a,) c?~/c%, 5 + iy = g E r,, that follows 
from (1. 121, it is reduced to (1.9) and consequently is proportional to the sum of the areas 
of all the inclusions. 

We consequently obtain 

Substitution of the expression (1.13) for pk finally yields 

m 

u h =- x z 
k-l 

.Qo’ mo (Xk - ‘) - fik (‘0 - 1)11$ ,bpk h -,- i) (xk - I)*] + b,,’ 

MO (Wk - 1) + 41klE Pk 

2. The existence of equally-strong contours is related to the solvability of condition 
(1.12) for the function &,(s) a unit potential explicitly dependent on the shape of I' (in 
terms of the relationship between 5 and 3). It is found simultaneously with the optimal 
boundaries themselves /5/ as the solution of the unilateral curve of the problem 

(%I - 2Pk) w~ h) + 2% h) = 0, 1 E Lk, (2.4) 

k = 1, 2, . . ., m 

generated by the identity (1.12) during the conformal. mapping of the auxiliary plane of the 
variable 9 into the exterior of Lk,parallel slits or circles. 

The absolute solvability of problem (1.14) for any values of the load parameters in the 
class of multivalued analytic functions is established in /4/. A natural requirement of 
single-valuedness imposes an additional constraint on the quantities a,, b,, which is derived 
as follows from the properties of the (single-valued) displacement vector (U,,(Z), u,,(z)), 

Let us subtract the component 

( 
(%--)Qo---&I x, t%--)aoi& 

S&l Sk% y) 

corresponding to the homogeneous field (1.1) from it. The transformed vector (u (2)" v Is)) 
decreases at infinity, by virtue of the identities I, (z) = con& z g I’ is harmonic in the 

domains S,, j= O,l, ..,,m, is continuous everywhere, and according to (1.51, (1.6) and (l-3), 
takes the following values on rk 

8' (E) = @- (E) = (%P (Ott - Pr) 5, u+ (E) = 

'- (8 = (2k%)-1 (PO - Pk) iiT % = 3 + i#E rR, 

k = 1, 2, . . ., m 

(2.2) 

From the loading conditions it is found /l/ that 

Multiplying both sides of the first of the relationships (2.3) by u(f), integrating over 

rk and then summing over k we have 

According to Green's formula all the integrals constructed are non-negative, whence 
results the necessary condition for the existence of equally-strong boundaries (consideration 
of v(z) in place of m(z) results in it also) 

mink (PO - Pk) t% - pk)-’ a 0 

(or taking (1.13) into account) into the equivalent form 

(2.4) 
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When all the pk = 0 (a plane with equally-strong holes), inequality (2.4) goes over 

into the relationship 1 b,/a, [<i obtained /5/ as the requirement for schlichtness of the 

function wO(q) from (2.1). In the general case the allowable value b, = dev T, has an 

upper limit set by the inclusion closest to the matrix in its elastic properties since the 

components of the tensor T (z) should also be mutually close near the common boundary of such 

materials according to the conditions of continuity (1.5) and (1.6), and dev T (z) E 0 in 
conformity with (1.11) in all the inclusions. 

Taking account of (2.4), the function 00 (3 giving the outline of the optimal boundary 

is found /4/ from the numerical solution of the regular integral equation equivalenttoproblem 

(2.1). If the material of all the inclusions is identical, meaning, pk = PI, k = 1, 2, . . ., m, 

then their optimal boundaries agree with the equally-strong boundaries of the free holes in a 

plane under the variable load P,' = P, + pl, Qo'= Q. +pl at infinity, as follows from the 

preceding. For a certain symmetry in their arrangement problem (2.1) is solved by quadratures 

/5/. There are examples of such contours in /4-6/. 

In particular, the equally-strong boundary of a single inclusion is an ellipse /5/ with 

Ma, - 2~~) as the ratio of the axes. Homogeneity of the stress field within it is first 

noted without any relation to optimality in /7/. 

3. Let the boundary r be optimal for the parameters PO, Q,, of the load (1.1) while 

the elastic moduli of all the inclusions are equal: pk = ha vk = VI so that also xx = x1. 

Then the solution of the boundary value problem (1.5) and (1.6) in closed form exists even in 

the more general case of arbitrary values of the forces at infinity aXs = P, aurn = Q, z,~== = 0. 
The potentials 'pr (Z) and @I(Z) in the domain &'_ are here linear in z while % (z) and 

$0 (z) are expressed in terms of the function n,(z) that is holomorphic in s, and 

decreases at infinity, from Sect.1 and which according to (1.12) and (1.13), satisfies the 

following identity on r 

(3.1) 

For the proof we represent the mentioned functions in a form that ensures their holo- 

morphicity and the conservation by the necessary asymptotic form 

41p,, (z) = az + 4D&, (z), 29, (z) = bz + 

2D,‘P, (z) - 2 [b,,z + 252, (z)l d,‘D&’ (z) 

4=P+Q, b=Q-PP, ZES, 

‘pl (z) = D,z, ql (z) = D,‘z, z E S- 

(3.2) 

D,, Do’, D,, 4’ are certain real constants. 

Substitution of these expressions into relationships (1.5) and (1.6) yields 

PR I’/‘ (x0 - 
-- 

1) a% + xoDoQ, (5) - V,bE - D,‘R (5)l - 
p,, [(xk - 1) DJ, - D,‘El = 0 

‘I& + Do% (E) + V2b% + D,,‘s2, (5) - 2D,f - 2D,‘i = 0 

Replacing the function g,,(g) in the identities obtained by using condition (3.1) and 

then equating the coefficients of 5 and f to zero, we obtain a system of linear algebraic 

equations in the desired constants 

Its solution has 

w,Wo -I- w&Do + 2~0 (xl - 1) D, = Vzpl (xo - 1) 4 

PN&D, -I- ~AaDo’ + 2W1’ = plb 
bGo - d,D,’ + 40, = a, -d,,D,, + b,D,’ + 20,’ = b 

the form 

DO = A--'(& - bd,) (PI- ~0) IPI (x0 - 1) - pLg(xl - I)], 

D,’ = A-’ (b,bA, - &A,) 

40,=a- V',+dfl,', 20,' = b + dJlo - b&,’ 

A = boaAl - a,d,A,, Al = (P1- PO) [2Pl%, - PO (Xl - I)1 

AB = (~1x0 + ~0) [PI (x0 - 1) - P,, (xl - I)I 

It is seen that these constants are independent of the number and mutual location of the 

inclusions. When the load is optimal for a given shape of r : P = P,, Q = Qo, meaning 
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“2; a$f = b,, they understandably take the values found in Sect.1: D, = D,’ = 0, D,’ = 1, 

1 + 
It follows from (1.8) and (3.2) that the stress field in the inclusions with equally- 

strong boundaries remains homogeneous for any values of the load 

0, (21 = 2D, + Dl', a, (z) = 2D, - Dl’, zxy (2) = 0, z E S_ 

although unlike (1.11) the tensor T(z) indeed ceases to be, generally speaking, global. 
Therefore, the property of field uniformity is characteristic for classes of sets of plane 
curves of equally-strong shape parametrically dependent on the ratios b,fa,, x,lx,, po/pI. 

The stresses on r in the n, t coordinate system are found from (3.2) by means of the 
general formulas of plane elasticity theory /l/ 

un+ (5) = %I- (5) = 20, + D,’ [l - 2 (ax/an)7 

T,,~+ (8) = T,~- (E) = 2D,‘8x/Bn x $//an 

CS~" (%) = e - a&, - 201 + (2D&, - 01) [I - 2 (c?x/h)z] 

otm (g) = 2D, - D,’ fl - 2 (8x/&~)‘V, E = x + iy E r 

The easily verified relationships 

as well as the identity (3.1) differentiated with respect to E are utilized here, 
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