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PIECEWISE-HOMOGENEQUS PLATES OF EXTREMAL STIFFNESS®

S$.B. VIGDERGAUZ

The shapes of a finite number of foreign inclusions in an elastic plane
that minimize its potential strain energy for a uniform stress field given at
infinity are sought. The area of the inclusions is considered known and
their contact with the fundamental plate material (matrix) is ideal. It
is shown that for a state close to multilateral compression the boundary
of each inclusion is optimal if the force interaction of the materials
along it reduces to a constant pressure of definite intensity. The stress
field in the inclusions here turns out to be uniform while the desired
boundaries are egually-strong. Their actual determination reduces to
solving well-studied modification of the conjugate boundary value problem
(explicit in a number of cases) for analytic functions.

1. Let T be a set of m smooth closed curves Iy, k=1,2, ..., m, located arbitrarily
in the exterior of each other in the E plane of the complex variable z=z+ iy, § is a
simply-connected domain of area ¢ within T%, S, is a multiconnected infinite domain sup-
plementing S_ = |} S up to E, and n,t are the directions of a local curvilinear coordinate
system on I along the normal and the tangent at any point E.

Each of the listed m + 1 domains is occupied by its own homogenecus and isotropic
linearly elastic material of identical small thickness h with shear modulus p; and Poisson's
ratio v, j=0,1, ..., m, together with which the constant x; = (3 — v;)/(1 + v;) corresponding
to a generalized plane stress state /1/ is also introduced. To be specific, we will assume
Po> gy =1,2, ..., m

The loading conditions are given by components of the stress tensor 7, at infinity

O™ = Pov o-ves —_ 00’ T»ﬂlw =0 (1.1)

Let us consider the problem of minimizing the strain energy of a plate by selecting the
optimal shape of the contours T. We have in the notation used

U@y, by Txo o Py, @p) > mingy = U, 1.2)
The energy density w (3} at each point of the plate can be represented in terms of the
invariants [,, J, of the stress tensor T {3 /1/
Bu; M +v)w(e) =hiI2 () + 2 +v) I, {2)] {1.3)
ZES}, ]=0, 1, 2, vy M
The curves Iy are lines of discontinuity of w (z). For functions of this kind, their
limit values on I' from §, and §_ will be denoted by the superscripts plus and minus,
respectively.
The following asymptotic form results from (1.1) as |z |— oco:
L@ =a+0(z% a=2P,+0,
41, (2) =boz—-—ao“+0(|2l“), by = Qo — Py

16, (1 + vo) w (z) = ch + O (Iz %)
= {1 — ) a;® + (1 - v,) b}

Taking this into account, we can write the regularized functional as a convergent integral
in E

U=£[W(w,y)——cldzdy+5 w(z, y)dzdy (1.4)

The first term in (1.4) corresponds to a perturbation of the uniform field (1.1) in S,
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induced by the inclusions, while the second is their intrinsic strain, For given forces by,
@, the minimum of U obviously corresponds to a plate of maximum stiffness.

The components of the tensor 7 (z) are determined in each domain in terms of a pair of
holemorphic potentials therein {3}, $(3), connected on I' by continuity boundary conditions
for the displacement vector (U, {3), ¥, ()} and the normal forces oy, {8), Tn: (E):

b (oo (B) — £ (B) — o (O] = b0 0 (B) — Er” (B) — ¥ B)] (1.5)
90 (&) + 800" €) + W0 (§) = 0 (&) + Epx’ (B + D (&) = Fx () 1.8)

tely, k=1, 2,..., m
49 (&) =a, + Oz, 29D =0b,+0(z[),
|21—>00 (1.7
I, (3} = 4 Re ¢ (2), I (2) + 4, (2) = (1.8)
4120 (D + V() 1} 28, j=0,1, 2,..., m

The functions fx(z) defining the contact forces between the matrix and the inclusions
are written down explicitly for convenience.

Let us pose problem (1.1) as a variational problem regarding the stationary value of the
quantity U in the form (1.4) for moving contours I} and isoperimetric constraints on the area
of the domain 8§, (dl = |d§| is the differential of the contour arclength):

Jedevit)an§ (—ri)amz, as
.4

k

Equilibrium equations of the medium in the domains S; and the stationarity condition on
' are obtained in the form of relationships for the jump in the function w {3} by using
ordinary variational techniques /2, 3/

W@ —w @) =My tE=Ty, k=1, 2,.., m (£.10)

It is known to be conserved if the shape of the contours Ty is such that the force
interaction of the phases along each of them reduces to just normal pressure of a constant
magnitude py and, this means to the accuracy of non-essential components [, (§) = p,&. The a
priori assignment of such forces affords the possibility of solving problem (1.6) separately
in the interior domains for contours of any kind: 2@x (2) = pyz, P (3) =0, 2= 8, k=1, 2, ...
m. The stress field therein is here uniform according to (1.8):

¥

I, (2) = const = 2py, I, (z) = const = —p,%, z= S, (1.11)

and in particular w {§) == const, Then it follows from (1.10) that w*(E) = const. when taking
account of the representation I3 (§) = 0, + 04y J3(8) = Ta? — 0,0 in the {r,  coordinate
system on I' and also the conditions o,* = p,, ¢, =0 this is equivalent to the well-known
equal-strength requirment /2/ for the desired contours: of' = const, which was earlier dis-
played in a number of papers as the necessary optimality condition in a plate with holes but
not with elastic inclusions according to the Mises local plasticity criterion /1/. It is
obtained in /3/ by a variational method for the energy criterion.

Now problem (1.6) for a domain S, under a given load on the egally-strong interfaces of
the media is identical with that considered in /4/ where it is shown in particular that 4, =
a3, 3E& 84, 0" = @y — 0,* == a4 + py, while the boundary condition

2o (8) = @ps — a9 B, B T, (1.12)
follows from (1.6) for g (2) = by z + Q, (2).

On the other hand, the elimination of 1, (§) from (1.5) and (1.6) after reduction yields
on the contour I

~ ”*("O‘f‘ 1) ap

Py =—0y, O — D 4y y G =0, (1.13)

It is characteristic that the magnitude of the pressure depends only on the global part
of the tensor Tu.

We will now find the value U, for the equally-strong boundaries, It follows from (1.11)
that the energy density w(z) in the interior domains 8y is constant while it results in
S, in the form

wiz, yYh—e~ b &) P — bt = grad? p, (z) —1/,;b*

when taking account of the previous reasoning and the Cauchy-Riemann relations for the func-
tions p, (3) = Re o (8) and p, (2} = Im ¢, (3) .
Consequently, the first component in (1.4) is converted into a curvilinear integral of
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p1(§) 9p; (8)/81 in T, on the basis of Green's formula and the asymptotic form (1.7). By virtue
of the identities 2p; (§) = (2py — a) z, o, (BYOl = (2px — @) By/dl, =+ iy =t = T, that follows
from (1.12), it is reduced to (1.9) and consequently is proportional to the sum of the areas
of all the inclusions.

We consequently obtain

_ b\ (20— 25 - be? (1= %) py?
U"Tgl LT BT T Ty %

Substitution of the expression (1.13) for p, finally yields

h m
U= 32 ZX

=1
2ag? {[o (4 — 1) — By (o — DIP + Polt,, (%0 -+ 1) (%, — 1)2} + B¢?
Tho O — 1) T 20, F 2

2. The existence of equally-strong contours is related to the solvability of condition
{1.12) for the function +,(z) a unit potential explicitly dependent on the shape of I (in
terms of the relationship between § and §). It is found simultaneously with the optimal
boundaries themselves /5/ as the solution of the unilateral curve of the problem

(@ — 2p¢) @o (M) + 20, () =0, M & L, (2.1}
k=12 ..., m
generated by the identity (1.12) during the conformal mapping of the auxiliary plane of the
variable 1y intc the exterior of L, parallel slits or circles.

The absolute scolvability of problem {1.14) for any values of the load parameters in the
class of multivalued analytic functions is established in /4/. A natural requirement  of
single-valuedness imposes an additional constraint on the quantities @y, b,, which is derived
as follows from the properties of the (single-valued) displacement vector (u, (z), Vs (z))s

Let us subtract the component

((ko—i)ao—zbox (0 — 1) ap + 2By )
8o ! 8 y

corresponding to the homogeneous field (1.1) from it. The transformed vector (u(z), v{(z))
decreases at infinity, by virtue of the identities [, (2) = const, 2 & I' is harmonic in  the
domains §;,j=0,1, ..., m, is continuous everywhere, and according to (1.5), (1.6) and (1.3),
takes the following values on I

W B =u () = Cu) (@ —p)z V() = 2.2)
v (E) = (2pe)* (Py — py) v, E=z+iye Ty,
k=1,2, ..., m

From the loading conditions it is found /1/ that

sut® _ FPo—m ow@®  ar@ _ S—r -
on~ — Qe—p, o8 '~ dn  Pa—p, On rEe=ly 2.3

Multiplying both sides of the first of the relationships (2.3) by u(8), integrating over
'y and then summing over k we have

ot ® . N1 Po—p, e Bu(E)
S ut @ —rdl_ Z Qo — Py § w (B an dl
I‘k k=1 x

According to Green's formula all the integrals constructed are non-negative, whence
results the necessary condition for the existence of equally-strong boundaries (consideration
of v{z} in place of u{z) results in it also)

ming (Py — py) (Qo — ) > 0
{or taking (1.13} into account) into the equivalent form

b o (%, — 1) — py, (% — 1) (2.4)
L po (%) — 1} + 2“‘](

< ming
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when all the u, =0 (a plane with equally-strong holes), inequality (2.4) goes over
into the relationship |by/a, | <{1 obtained /5/ as the requirement for schlichtness of the
function ®, () from (2.1). In the general case the allowable value b, =devTs has an
upper limit set by the inclusion closest to the matrix in its elastic properties since the
components of the tensor 7T (z} should also be mutually close near the common boundary of such
materials according to the conditions of continuity (1.5) and (1.6), and devT (3)=0 in
conformity with (1.11) in all the inclusions.

Taking account of (2.,4), the function 4 (%) giving the outline of the optimal boundary
is found /4/ from the numerical solution of the regular integral equation equivalent to problem
(2.1). If the material of all the inclusions is identical, meaning, prx = Pi1, k=1,2, ... m,
then their optimal boundaries agree with the equally-strong boundaries of the free holes in a
plane under the variable locad P, = P, + p,, Q' = Qo + p4 at infinity, as follows from the
preceding, For a certain symmetry in their arrangement problem (2.l1) is solved by quadratures
/5/. There are examples of such contours in /4-6/.

In particular, the equally-strong boundary of a single inclusion is an ellipse /5/ with
bo/(a, — 2p,) as the ratio of the axes. Homogeneity of the stress field within it is first
noted without any relation to optimality in /7/.

3. Let the boundary I be optimal for the parameters P, Qo of the load (1.l1) while
the elastic moduli of all the inclusions are equal: Mg = Wy ¥k = vy so that also % = %;.
Then the solution of the boundary value problem (1.5) and (1.6) in closed form exists even in
the more general case of arbitrary values of the forces at infinity ¢,° = P, ¢, = Q, 1, = 0.
The potentials @;(z) and 1;(2) in the domain S§_ are here linear in z while @;(z) and
P, (2) are expressed in terms of the function Q4(2z) that is holomorphic in S and
decreases at infinity, from Sect.l and which according to (1.12) and (1.13), satisfies the
following identity on T

= —_1) — —~1
2Q,(2) = dE —bok, dy= 1 ()2‘;1 +)P-o (::f;) ) ay, t=T (3.1)

For the proof we represent the mentioned functions in a form that ensures their holo-
morphicity and the conservation by the necessary asymptotic form

4y () = az + 4D,Q (2), 2y () = bz + (3.2)
2D,'Qy (2) — 2 [byz + 29, (2)] 44D Q,’" (2)

a=P+Q, b=Q—P, z2& 8§,

¢1(2) = D1z, ¥, (z) = Dyz, z&= 8.

D,, Dy, D, D are certain real constants.
Substitution of these expressions into relationships (1.5) and (1.6) yields

uy [Yg (%o — 1) a + "oDoEzo (8) — Yk — Dy Q (B)] —
Mo [(%x — 1) D,§ — D,'E] = 0
Y,at + DoQ, (8) + Y,bE + D,'Q, (8) — 2D, — 2D,'E =0

Replacing the function Q(_, (§) in the identities obtained by using condition (3.1) and
then equating the coefficients of § and § to zero, we obtain a system of linear algebraic
equations in the desired constants

wxoboDo + padeDo’ + 210 (%, — 1) Dy = Yopy (g — 1) @
MaxodeDo + pabeDy’ + 20Dy = pyb
beDy — dyDy' + 4D) = a, -d,D, + byD," + 2D, = b

Its solution has the form

Dy = A™ (aby — bdy) (11 — o) [py (¢ — 1) — o (% — 1)1,
Dy = AT (bobAy — adyAy)

4Dy = ¢ — boDy +doDy’, 2Dy = b + dyDy — byD,’

A = bg*Ay — aydyh;, Ay = (p; — o) [2pyxg — g (¢ — 1)1
Ay = (my%o + Ho) [y (o — 1) — pg (%, — 1)]

It is seen that these constants are independent of the number and mutual location of the
inclusions., When the load is optimal for a given shape of [:P =P, Q= @Q,, meaning
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a = ay, b= b, they understandably take the values found in Sect.l: Dy =Dy =0, Dy =1,
2D, = p,.
It follows from (1.8) and (3.2} that the stress field in the inclusions with equally-

strong boundaries remains homogeneous for any values of the load
0 (2) = 2Dy + Dy, 0,(z) = 2D, — Dy, Ty (2) =0, zES_

although unlike (1.11) the tensor T (z) indeed ceases to be, generally speaking, global.
Therefore, the property of field uniformity is characteristic for classes of sets of plane
curves of equally-strong shape parametrically dependent on the ratios by/ay, %¢/%y, BeU;.

The stresses on I' in the n, t coordinate system are found from (3.2) by means of the
general formulas of plane elasticity theory /1/

o,* (8) = 0,” (8) = 2D, + Dy’ (1 — 2 (9z/6n)*]

Tut" (8) = Tur™ (§) = 2D,'02/0n X dy/on

0" (}) = a — 4Dobo — 2Dy + (2Dody — Dy) (1 — 2 (z/ony]
o7 (B =2D, — Dt —2@x/on)], E=z+iyesT

The easily verified relationships

0k 9z \3 5 0z 9y
Rege-=1-2(5), mZF =273

as well as the identity (3.1) differentiated with respect to § are utilized here,
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